
Projet ANR- 14-CE22-0006 

ELITISME 

 

 

  

 

 

 

 

ELITISME  WORKING PAPER SERIES 

ANR-ELITISME-2016-003  

 

 

 Are users better-off with new transit lines? 

 

Moez Kilani, André de Palma, Stef Proost 

 



Are users better-off with new transit lines?
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Abstract

This paper studies the entry of new competitors in public transport like long dis-

tance busses that compete with rail. A stylized model is used that analyzes the addition

of a new more direct line in an existing network. We show that the introduction of

the new line is only beneficial if there are relatively many users that want to use the

new direct line. Our result raises serious concerns with respect to the decentralized

management of transit systems.
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1 Introduction

Over the last 20 years, several countries have deregulated and liberalized the entry of new

public transport suppliers. Following the UK example (1980), there was a bus deregulation in

Sweden (1997), Norway (2003) and more recently Germany (2013) as well as France (2015).1

Typically bus companies open a new direct line between two cities that were previously only

connected indirectly via a rail network.

Engineers and economists have studied situations where adding a new route may decrease

social welfare.2 This may only occur in the presence of unpriced congestion (or at least if

congestion is not priced at the first best). As we will see, this natural conspiracy may occur

also in the public transport context considered here. In this case the externality is the waiting

time externality. We will study here the potentially negative consequences of changing the

network (by adding a new service) or changing market organization (with the divestiture

of two operators) in a public transport system. Often, when some new infrastructure is

built, there are winners and losers (those may be compensated). We will use the term

”destructive change” to refer to this extreme case where, after the change (of infrastructure

or in organization) losers outweigh the gainers (social welfare decrease). In this case, loosers

cannot be compensated.

We focus on the simplest set up of public transport links. Take any two public transport

links that are connected (AB,BC) where part of the passengers also travel from A to C (see

Fig. 1 for illustration). Then adding a direct service from A to C can increase the overall

travel costs when the direct service is not managed by the same operator as the two connected

lines. The two main ingredients are the positive effect derived from more passengers on a

line as well as the absence of cooperation in the operation of the public transport lines. The

positive externality associated with a more frequent bus or rail service when the number of

passengers increases is attributed to Mohring (1972). Mohring’s best known finding is that

minimizing the sum of travel costs and bus operating costs, in a regime with frequent service

1For a review of the bus regulation in Europe see Van de Velde (2009).
2This is sometime referred to as the Braess paradox, in the context of private transportation

2



and buses that are not full, implies that the frequency of service increases with the square

root of the number of passengers. As waiting time is a component of the travel costs, an

increase in the number of passengers will in general decrease waiting costs and travel costs:

there is a positive externality associated with an increase of the density of passengers on a

line. The second component is the lack of coordination between the initial lines (AB,BC)

and the new line. When it would be the same operator, he would take into account the

loss of surplus for the passengers that remain on the initial lines. But when it is a different

operator, he will not be concerned about the loss of passengers on the other lines.

The issue we signal is more widespread than it appears at first sight. Pickrell (1990)

found for the public transport networks of Buffalo, Miami and Sacramento that adding a

link to the existing public transport network decreased overall ridership for public transport.

Trips were probably diverted to the road network. In Europe, where public transport has a

larger market share, the issue is common when a HSR line is built next to an existing rail

line. HSR lines are often operated by a different operator (Thalys, Eurostar) than the local

rail lines. Whenever a new air transport link, or bus link, that competes with a network of

rail lines is offered, the issue may also appear since the two suppliers are clearly different.

The entry of new bus lines in the US and Germany is discussed in more detail in Augustin

et al. (2014). Aarhaug & Fearnley (2016) conclude that in Norway competition is essentially

intermodal. de Palma et al. (2011) deserve several chapters to competition and regulation

of transportation activities for different modes.

The paper is organized as follows: Section 2 presents the setting of the network, Section 3

shows under what condition the destructive change problem may occur and the extension to

the case of synchronized services is discussed in Section 4. Section 5 presents illustrations and

Section 6 concludes with caveats. Proofs and technical material are relegated to Appendices.

2 The setting

The paper considers a public transport network without congestion where a fixed number

of passengers want to go from A to B, from B to C and from A to C via B. We show under

3



what conditions the addition of a new direct line AC, which avoids the use of the AB and

BC links, would increase total user and operator costs. This can be relevant for any network

where the additional line AC is operated by an operator other than that of the AB and BC

lines.

Consider the transit system represented in Fig. 1. There are three stations A, B and

C and three groups of users. Each group of users is identified by its origin-destination

pair, denoted (AB), (BC) and (AC). Initially, there are only two transit lines (AB) and

(BC). We distinguish between two management regimes. In the decentralized regime one

operator manages lines (AB) and (BC) and a second operator manages line (AC). In the

centralized regime the same operator manages the three lines (AB), (BC) and (AC). The

decentralized regime is common when group (AC) is using a different mode. Then there

are no technological economics of scope. Many regulators may favor the entry of a different

operator because they fear abuse of monopoly power by the incumbent operator. We assume

that the willingness to pay for the trip is the same for all passengers and is sufficiently high to

make it worthwhile to organize a public transport service. The destructive change problem

we discuss is consistent with two types of operator behavior: either he minimizes the sum

of the user costs and the operator costs or he maximizes profits. In the first case, we

are in the traditional Mohring case where the operator is instructed by a regulator to use

this objective function. In the second case, the operator maximizes his profits for a given

maximum willingness to pay and for a given ridership, by minimizing again the sum of

user costs and operator costs and charging the maximum willingness to pay minus a small

amount.3

3When a second operator supplies services on link AC and competes with the operator of lines AB and

BC, it can be shown that if the destructive change problem appears, the user cost for passengers that use

the direct AC link is always lower than the user cost of the AB+BC link. With a lower user cost, the second

operator will also, in the profit maximizing case, supply the direct link, and the initial operator cannot

drive him out of the market with lower prices as the user cost of the initial operator is higher when the

problem applies. This holds certainly for the case where users are uniform and when no price discrimination

is possible.
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A

B

C

Figure 1: The existing transit system AB,BC and the new entry AC - this setting is called

T

At the heart of the problem is the wait time. Assuming that users arrive at a uniform

rate at the station, their average waiting time is equal to one divided by twice the frequency.

The assumption of uniform arrival rates is widely accepted when the bus or train frequency

is quite high. So, the wait time decreases as the service frequency increases and vice versa.4

With only two transit lines, users (AC) need to commute through B. They have a longer

travel time, and the new transit line project will a priori decrease the travel cost of these

users, if line (AC) is run by an operator who does not take externalities on (AB) and (BC)

into account.

It is possible that in the initial case, the demand for the two lines (AB) and (BC) is

high. The operator then sets relatively high frequencies. With the addition of the line

(AC), the demand on transit lines (AB) and (BC) declines, and the operator decreases the

frequencies. The waiting time increases for users (AB) and (BC). Only users (AC) may

potentially benefit from the new transit line. We show that the net social impact is not

necessarily positive. This result obtains since, initially, the public transport system benefits

from economics of density which decrease when a new line (AC) is operated by another

4When the service frequency is small, users are likely to consider timetables and incur a small or no wait

time. Instead of wait time, one can consider a dynamic model with preferred arrival times and can still

produce similar economics of density in the model. Intuitively, assume that users have uniformly distributed

arrival times over a finite interval. When they use a train they will incur a schedule delay (either early or

late arrival). We adopt below a general formulation that allows us to easily switch between wait time costs

and schedule delay cost.
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operator, and users are more dispersed over the network provided all the links are used. In

the next section, we prove this result using an analytical model. Notice that investment or

construction costs are not taken into account (or assumed zero). However, the destructive

change problem presents itself whether operating costs are included or not.

3 The potential negative effects of entry

We denote the transit system of Fig. 1 by T . We denote by nij the number of passengers

travelling from node i to node j. The number of travellers is kept fixed. We have, nij > 0

for ij = AB,BC and AC. Initially, there are only two transit lines (AB) and (BC), and

the addition of a new direct line (AC) is considered later. Let fij denote the frequency

of service on line (ij), and let tij denote the travel time from i to j. For each passenger,

the total travel time is the sum of waiting time and travel time. While nondeterministic

services (cf. Monchambert & de Palma 2014) can be assumed for a more realistic model,

they do not affect our main conclusion but introduce further complications. So we assume

that timetables are deterministic. The average waiting time for users of transit line (ij) is5

δ/fij.

5As we have mentioned in footnote 4, we can either have a high frequency where users arrive at a uniform

rate to the station, or a small frequency where the users use the time table, and do not incur wait time cost,

but do incur schedule delay cost. In the former case, the average wait time is 1/2f , where f is the service

frequency. In the second case, denote the early arrival cost β, the late arrival cost γ and let the considered

time period be normalized to one. The average schedule delay cost in this case is either 1/2f in the case

of high frequency or βγ/(2(β + γ)f) in the case of low service frequencies and schedule costs. So, δ equals

either 1/2 (high frequency) or δ = (βγ)/(2(β + γ)). Of course, δ may take other values to combine both

effects. We normalize all unit costs so that the value of time equals 1.
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The total user cost, denoted C1, is given by6

C1 = (tAB + δ/fAB) (nAB + nAC) + (tBC + δ/fBC) (nBC + nAC), (1)

where users (AC) necessarily select first (AB) then (BC). Notice that with two transit lines,

users (AC) board line (AB) and then line (BC).

The operating cost of a vehicle is constant and equal to θ. The constant cost helps us

to derive the results easily, but is not crucial for our conclusion. What matters is to have a

total cost that increases with respect to the number of vehicles in service. The total cost in

the system is the sum of the user’s cost and the operator’s cost, or

TC1 = C1 + θ · (fAB + fBC). (2)

Notice that passengers (AC) have a waiting time in station A and a waiting time in station

B. We assume that the two services (AB) and (BC) are not synchronized.7 As we show in

Section 4, the main result also holds with synchronized service. We also assume that oper-

ation costs are sufficiently low so that it is never interesting to use vehicles at full capacity.

This rules out a solution where public transport is congested, and we can concentrate on the

internal solutions of the of Mohring problem where vehicles are never full.

The operator minimizes total travel cost TC1. Taking the first-order conditions for (2)

with respect to the frequencies and solving yields fAB =
√

δ(nAB + nAC)/θ and fBC =
√

δ(nBC + nAC)/θ. We check that second-order conditions are positive, so these solutions

are global minima. These expressions are the well-known square root rule formula Mohring

(1972). Plugging these frequencies in (1) and (2) yields, for the user cost,

C∗
1
=

(

nAB + nAC)tAB + (nBC + nAC
)

tBC +
√
θδ

(√
nAB + nAC +

√
nBC + nAC

)

, (3)

6We assume that all alternatives have the same fares for the user. Price competition between operators

leads to complex analysis. We have an ongoing research project that addresses this particular issue. Baker

& White (2010) have noticed that, even at the empirical level, the impacts of fare changes on operators is

difficult to measure.
7So, at station B, users (AC) have the same average wait time as users (BC).
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and for the total cost we have

TC∗
1
= C∗

1
+
√
θδ

(√
nAB + nAC +

√
nBC + nAC

)

. (4)

The stars denote optimized quantities with respect to frequencies. θδ is found in several

expressions. Notice that θ is a technological cost parameter, while δ is a behavioral cost

parameter.

Now consider the case where an additional line (AC) is available. Each group of passen-

gers will use its own transit line. Then total user cost is the sum of the cost for each group.

It is given by

C2 = (tAB + δ/fAB)nAB + (tBC + δ/fBC)nBC + (tAC + δ/fAC)nAC , (5)

and total travel time is obtained, similarly as for Eq. (2), by adding operators costs, i.e.

TC2 = C2 + θ · (fAB + fBC + fAC). (6)

The square root rule holds again for each transit line and we have fij =
√

δnij/θ for ij =

AB,BC,AC. Plugging the values of these frequencies in the expressions above yields for the

user cost

C∗
2
= nABtAB + nBCtBC + nACtAC +

√
θδ

(√
nAB +

√
nBC +

√
nAC

)

, (7)

and for the total cost

TC∗
2
= C∗

2
+
√
θδ

(√
nAB +

√
nBC +

√
nAC

)

. (8)

For the discussion below it is simpler to start from the following case.

Assumption 1 (symmetry). The travel cost of the new line is the sum of the travel costs of

the two existing lines, i.e. tAC = tAB + tBC.

To evaluate the impact of the new line we have the choice whether to include or not the

cost of the operator. We show below that in both cases it is possible that the problem arises.

We have the following result:
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Lemma 1. Consider the transit system T and decentralized management of the lines. Then,

under Assumption 1, the variation of total cost after adding the new line has the same sign

as the variation of user costs:

1

2

(

TC∗
2
− TC∗

1

)

= C∗
2
− C∗

1
=
√
θδ · ψ(nAB, nBC , nAC), (9)

where

ψ(nAB, nBC , nAC) ≡
√
nAC −

(√
nAC + nAB −

√
nAB

)

−
(√

nAC + nBC −
√
nBC

)

. (10)

Furthermore, for any nAB, nBC > 0, let n̂AC > 0 be the unique solution to ψ(nAB, nBC , nAC) =

0 in nAC. Then, ψ(nAB, nBC , nAC) > 0 if, and only if, 0 < nAC < n̂AC.

The proofs are given in Appendix A. The first part in Lemma 1 states that whether the

impact of the new transit line (AC) is positive or negative does not depend on whether the

operator’s cost has been included (in the total cost) or not. Without the operator’s cost,

the magnitude of the impact of the new transit line is half as important. The second part

of the lemma says that for any sizes of user groups (AB) and (BC), it is possible to find a

sufficiently small, but positive, size of group (AC) such that the new line induces an increase

in the total cost. It is then important to check under what conditions this new line will

indeed be used by group (AC).

Lemma 2 (Users choice). Under Assumption 1, when users (AC) have the choice between

path (AB), (BC) or path (AC), they all select path (AC) if, and only if, nAC > ˆ̂nAC, where

ˆ̂nAC is the unique solution of φ(nAB, nBC , nAC) = 0, in nAC, with

φ(nAB, nBC , nAC) = n
−1/2
AC − (nAC + nAB)

−1/2 − (nAC + nBC)
−1/2. (11)

This result shows that when the number of passengers from A to C is sufficiently large

they choose the new direct transit line (AC) and no longer transit through B. This is

because, when nAC is large, the operator of the new transit line sets high frequency, leading

to smaller wait time on line (AC). The next step is to check that the results of Lemma 1

and Lemma 2 can be obtained simultaneously.
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Lemma 3. Let n̂AC and ˆ̂nAC be as defined in Lemma 1 and Lemma 2, respectively, i.e.

ψ(nAB, nBC , n̂AC) = φ(nAB, nBC , ˆ̂nAC) = 0. Then, for all nAB, nBC > 0, we have ˆ̂nAC < n̂AC.

It is now straightforward to state the main result.

Proposition 1 (Symmetry: tAC = tAB + tBC). Consider the transit system T and As-

sumption 1. If a new operator runs the new line (AC) then it is used by group (AC) and it

increases total user cost if, and only if, ˆ̂nAC < nAC < n̂AC, where n̂AC and ˆ̂nAC are defined

in Lemma 1 and Lemma 2, respectively.

From Proposition 1, when the transit system is operated by distinct agents it is possible

that a new transit line is added to the network and has customers while it leads to an increase

in the average user cost. When all the transit lines are operated by a single agent, only a

naive decision process will lead to such network development, since the global optimum will

always select the solution with the lowest cost.

Consider the symmetric case (Assumption 1), and let variables x and y be defined as

proportion of passengers that want to go from A to B, and B to C relative to passengers that

want to go from A to C: i.e. x = nAB/nAC and y = nBC/nAC . It is clear then, that the sign

of ψ(nAB, nBC , nAC) depends only on x and y. In the (x, y)−plane, the implicit curve defined

by equation ψ(nAB, nBC , nAC) = 0 is denoted by C1. Fig. 2 is given for illustration. The

destructive change problem, described in Proposition 1, appears only in the area above C1

(parts II and III). On the same figure, curve C2 corresponds to Eq. (11) in the (x, y)−plane.
From Lemma 2, the new transit line (AC) is the choice of users (AC) only for values of x

and y below C2 (areas I and II). For x and y in area III, above curve C2, users (AC) will

prefer path (AB), (BC) because it has a smaller user cost.

With decentralized management of the transit system, an operator will operate line (AC),

and users (AC) will use it, but the overall user cost may increase due to the increase in wait

time for users (AB) and users (BC). Next, we show that the main result may hold also in

the asymmetric case (when Assumption 1 is not satisfied).
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n
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x = nAB/nAC

C1

C2

I

II

III

Figure 2: in zone II the new line AC increases total average cost of the system

Proposition 2 (Non symmetry: tAC ≶ tAB + tBC). Let ∆t = tAB + tBC − tAC and define

∆̂t =
√
θδ ψ(nAB, nBC , nAC)/nAB and ˆ̂∆t =

√
θδ φ(nAB, nBC , nAC). When the new line (AC)

is run by a new operator, then (i) it decreases the user cost if ∆t > ∆̂t, and increases user

cost if ∆t < ∆̂t, (ii) it is used by group (AC) if, and only if, ∆t > ˆ̂∆t. Moreover, for all

nAB, nBC , nAC > 0, we have ˆ̂∆t < ∆̂t.

On a general ground, the result in Proposition 2 is a direct consequence of the continuity

of the cost functions and the Weierestrass theorem. It is interesting to illustrate the interplay

between total users cost and the equilibrium condition for users (AC). In Section 5 below,

we provide an illustration with non symmetric parameter values, i.e. with tAC ≶ tAB + tBC .

Notice that even for tAC > tAB+ tBC line (AC) may still be the choice of users (AC) because

it has a smaller waiting time than path (AB), (BC). This can occur when users (AC) have

a wait time cost in station B, but it is ruled out when the same train travels from A to B

to C. The formal analysis of this case is given in Section 4, but the intuition for the result

is quite easy to see. Indeed, when users (AC) do not have a wait time in station B, and

if tAC > tAB + tBC they will benefit from line (AC) only when their wait time in station

A decreases, and thus, only when the frequency of the new transit line is higher than the
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frequency on path (AB), (BC). This is not possible since the frequency is increasing with

the number of users (see the square root rules derived above) and users (AC) no longer

benefit from the positive impact of users (AB) and users (BC).

As a last point in this section we ask whether a voting process can lead to the destructive

change problem we discuss in this paper. The following result provides a negative answer.

Proposition 3. (Majority voting) Let ∆̂t and ˆ̂∆t be defined as in Proposition 2. Operating

the new line (AC) will be adopted by majority voting if, and only if, nAC > nAB + nBC and

ˆ̂∆t < ∆̂t. Moreover, when nAC > nAB + nBC we have ∆̂t < 0.

Proposition 3 implies that when the median user benefits from the new transit line, then

it is welfare improving and it leads to a decrease in the average user cost. In the symmetric

case (Assumption 1), when nAC > nAB + nBC we necessarily have ψ(nAB, nBC , nAC) ≤ 0. In

the next section we show that when services in lines (AB) and (BC) are synchronized, then

the problem never appears under majority voting, independently of the values of tAB, tBC

and tAC .

4 Synchronized services

When trains (AB) and (AC) are synchronized, users (AC) have a smaller or no wait time

at station B. In the simple case, they do not change platform when the same train departs

from A, stops in B and then continues to C. It follows that fAB = fBC = f and that users

(AC) do not have a waiting time in station B, since they do not change train (we ignore

dwell time at station B). The model is solved following the same procedure as in Section 3.

Without transit line (AC), replace all the frequencies with f in Eqs. (1) and (2), and

minimize the total cost to find optimum frequency f =
√

δ(nAB + nBC + nAC)/θ. Then,

substitute into the total cost to find

C∗
1
= (nAB + nBC)tAB + (nBC + nAC)tBC +

√
θδ
√
nAB + nBC + nAC .

With transit line (AC), the frequencies are f =
√

δ(nAB + nBC)/θ and fAC =
√

δnAC/θ,

12



and the total cost is

C∗
2
= nABtAB + nBCtBC + nACtAC +

√

θδ nAC
√

(nAB + nBC)θδ.

It follows that the difference in the total average user cost satisfies

C∗
2
− C∗

1

θδ nAC
= 1 +

√

nAB + nBC
nAC

−
√

nAB + nBC + nAC
nAC

−∆t

√

nAC
δθ

. (12)

Comparing the users cost for group (AC), we see that they will benefit from the new transit

line and use it if, and only if,

n
−1/2
AC − (nAB + nBC + nAC)

−1/2 −∆t/
√
δθ ≤ 0. (13)

A small change of parameter values in the numerical example of Section 5 shows that a

positive quantity in Eq. (12) and inequality (13) can hold simultaneously, yielding the prob-

lem of interest for the case of synchronized services. It is clear from Eq. (13) that, for

nAB + nBC > 0, the new transit line will be used only if ∆t > 0, i.e. tAC < tAB + tBC .

We then state the equivalent result of Proposition 3 for the case where transit services are

synchronized.

Proposition 4. When services between lines (AB) and (BC) are synchronized, the destruc-

tive change problem never appears under majority voting when all users participate.

When train services are not synchronized we have shown that voting can lead to the issue

of interest, but only for some cases where line (AC) is longer than the sum of the length

of lines (AB) and (BC) (cf. Proposition 3). Proposition 4 shows that this can never hold

independently of the length of the three lines. The intuition of this result is quite simple.

Indeed, when services are synchronized, users (AC) will use line (AC) only when it is shorter

than the sum of the length of the two other lines, while in the absence of synchronization,

they may switch to a longer line (AC) to avoid wait time at B.

5 Illustration and policy implications

It is helpful to use first a small numerical example before moving on to some real world

examples. Table 1 provides the parameter values. The first two lines provide the input data

13



(number of users and travel cost on each link). Under case I, there are only the two transit

lines (AB) and (BC). Under case II, transit line (AC) is added. For each case, we compute

the frequencies, the waiting time and the average user cost for each group. In the input data,

the transit line (AC) is slightly shorter than the sum of the lengths of the two other transit

lines. The average total cost is given in the last two columns. In column C we use Eqs. (1)

and (5), so the operator’s cost is not included. In column TC, we use Eqs. (2) and (6), so

the operator’s cost is included. In the last block, the impact of operating the new transit

line (AC) is evaluated. In this case, we find that the service frequencies decrease for transit

lines (AB) and (BC), so the average waiting times increase for the corresponding groups

but decrease for the users of the new transit line. This is because they only wait in station

A. The last line in the impacts block shows that benefits to users (AC) from the new transit

line is not large enough to compensate for the loss of users in the other two groups. In this

example, both C and TC increase. Notice that in Table 1, the impact on the total cost

when operating cost is included is more than twice the impact when only total user costs

are taken into account. Indeed, Eq. (9) holds under Assumption 1, while in this example we

have tAC < tAB + tBC .

The numerical values in Table 1 yield a small increase in the user cost. One may ask

whether this is always the case, or if it is possible to have other cases with large increase in

users costs. To answer this question it is helpful to evaluate the upper bound on the change in

the user cost caused by the new transit line. From Eq. (10), we have that ψ(nAB, nBC , nAC) ≤
√
nAC . Then, using Eqs. (3) and (7) we get, for tAC ≤ tAB + tBC , the following inequality

C∗
2
− C∗

1
≤ nAC

(

√

θδ/nAC −∆t
)

, (14)

where N = nAB + nBC + nAC , the total number of transit users, and ∆t = tAB + tBC − tAC .
For the numerical values considered in this example, the upper bound on the impact is

smaller than one (≈ 0.80), but is not even reached since it requires that nAB and nBC are

very large with respect to nAC . This will at the same time, however, lead to increases in N

in Eq. (14). The only case where one can obtain large impacts is when nAC is very small

and dominated by small values of nAB and nBC . Indeed, in this case the right hand member
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Transit lines and users Costsa

AB BC AC C TC

Input data

Number of users 25 25 10 – –

In-vehicle travel time (mn) 5 5 9.80 – –

Case I: only transit lines (AB) and (BC)

Frequencies (veh/mn) 0.59 0.59 – – –

Average wait time (mn) 0.84 0.84 1.68 – –

Total average travel time (mn) 5.85 5.85 11.69 6.82 7.80

Case II: three transit lines (AB), (BC) and (AC)

Frequencies (veh/mn) 0.50 0.50 0.32 – –

Average wait time (mn) 1.00 1.00 1.58

Total average travel time (mn) 6.00 6.00 11.38 6.90 7.99

Impacts

on frequencies (veh/mn) -0.09 -0.09 – – –

on wait time (mn) 0.16 0.16 -0.10 – –

on total average travel time (mn) 0.15 0.15 -0.31 0.08 0.19

acosts are computed on the assumption that one minute is equal to one monetary unit.

Table 1: An illustration of the destructive change problem
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in Eq. (14) will be proportional to 1/
√
nAC and can be made arbitrarily large by scaling

down the number of users. It is clear that this remains a theoretical possibility. In Figure 3,

we have set nAC = 10 and draw the contour levels for the impact on the average user costs

resulting from new transit line for distinct values of nAB and nBC .
8 Curves C

′

1
and C

′

2
do the

same plane partition as curves C1 and C2, respectively, given in Fig. 1. So, the issue arises in

the area between C
′

1
and C

′

2
. Each contour line corresponds to the indicated change in the

average user cost, and the positive values indicate that the introduction of the transit line

(AC) increases the average user cost. The contour lines show that the maximum increase in

the average user cost is obtained for finite values of nAB and nBC inside the curve of contour

level 0.076.

In practice, PT networks are more complex than three nodes and an extra more direct

link is often provided using another mode. This can be a direct bus line, a HSR line or

a flight added to national train service. The new line will then be quicker and sometimes

more expensive, or slower and less expensive. It remains true that the addition of the new

line decreases the generalized cost but with a heterogeneous population, not all customers

may opt for the new alternative. We limit this paper to two illustrations. In the North of

Belgium, Brussels used to be connected to the Rotterdam-Amsterdam area via a rather slow

international train with a frequency of one train per hour. This train made more or less

10 stops in between. This international (slow) train has been replaced by a fast and more

expensive train service (Thalys, international joint venture) that made only 3 stops between

Brussels Midi and Amsterdam. This has resulted in a strongly deteriorated service for the

smaller towns in between that see their frequency of service strongly reduced. This problem

is probably less likely to occur when the same rail operator organizes the local trains as well

as the faster more direct trains. A second example concerns the competition of the German

railways by direct bus lines (Augustin et al. (2014)). The intercity rail service is organized

by the Deutsche Bahn (DB) and up to 2012, competing intercity services were not allowed

except if they offered a significantly better or cheaper service. No intercity buses (except

8Fig. 3 is similar to Fig. 2 except for the change of variables. Indeed, in Fig. 3 the (nAB , nBC)−plane is

used instead, and we consider the difference in cost averaged over the total number of users.
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Figure 3: Contour levels showing the impact of the new transit line on the average user cost
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(cf.

Lemma 2)
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those controlled by DB) were operated. But in 2013, intercity buses were officially allowed

and there are now several intercity bus companies and more than 100 new bus lines were

created. According to DB, one third of the passengers of the new bus lines have switched

away from intercity rail lines (Barrow (2014)). Bus transport is cheaper and can take more

direct routes than rail, which is constrained to use the existing track infrastructure.

6 Policy implications and conclusions

What are the policy implications ? In the destructive change problem we describe there is a

conflict due to economics of density. Subsidizing the external economics of density for both

alternatives (AB, BC and AC) will not lead to the right solution as the best solution is a

corner solution. The only way to avoid the problem is to not allow a competing operator to

open the new line and reserve the right for new lines to the incumbent operator. The issue

may be stated in other forms to fit different situations. Consider, for example, the situation

where transit lines (AB) and (AC) are operated by another (single) agent (or a country),

say A, and transport line (BC) is operated by an agent (a country), say B. The operators

(countries) A and B do not cooperate and each one is concerned by the travel cost of its

own users. If the number of users (AB) is large enough, the introduction of the new transit

line will not reduce the average user cost for groups (AB) and (BC). In this case operator

A of the network will not undertake the investment and users (AB) will continue to benefit

from the positive externality induced by users (AC) on their line. However, if the number

of users (AB) is small in comparison to (AC), then operator A will choose to invest in the

new line, and the positive externality for users (AB) will be removed. The global impact, in

this case, will depend on the size of group (BC). If it is large enough we will have a global

negative impact on the network.

In this paper we have described a situation where the expansion of a PT network can

contribute to an increase in total user cost. This result suggests that a careful inspection of

the network is needed before any investment decision is made. Indeed, mass transit benefits

from the large number of users on each line. Our result has some similarity with the empirical
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analysis in Winston & Maheshri (2007) who find that many urban rail systems in the US

are not economically justified. Winston and Maheshri attribute the decrease in demand to

urban sprawl and the induced lower density, and did not refer to the structure of the rail

network itself as we do in this model. We also notice that our analysis disregards long run

impacts and the possible relocation of households and firms induced by the development of

transit network (cf. Baum-Snow et al. 2012). As users in A and C can be better off than users

in B, the direct link AC may very well imply a loss of population and business for location

B. A full analysis of these second order effects requires a general equilibrium approach as

suggested by Redding & Turner (2015). Ahlfeldt et al. (2015) show how those towns that

happen to be selected as HSR stop along the Cologne – Frankfort line, benefit from these

second order relocation effects.

Finally our result was obtained using several assumptions. The most important one is

that the operator will adjust the service frequency as a function of the number of users of

each line. This was first stated in Mohring (1972) and is widely accepted by researchers

and practitioners. Also, we have implicitly considered a single mode and inelastic demand.

When other modes are involved their use may involve different types of externalities (road

congestion, crowding) that may need additional consideration.
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A Proofs

A.1 Proof of Lemma 1

The expressions in Eqs. (9) and (10) are obtained by rearranging terms in Eqs. (3), (4),

(7) and (8). Let x = nAB/nAC and y = nBC/nAC . Taking
√
nAC as a factor in ψ, we can

introduce function g(x, y) = 1 +
√
x −

√
1 + x +

√
y − √1 + y so that ψ(nAB, nBC , nAC) =

√
nAC g(x, y). We have to show that g(x, y) can take positive values for x, y ≥ 0. Notice that

√
x −

√
1 + x is a strictly increasing function of x from −1 (for x = 0) to 0 (for x → ∞).

Taking into account the symmetry between x and y in g(x, y), we immediately conclude that

for sufficiently large x and y, g(x, y) is positive. From the definition of the variables, large

x and y correspond to relatively small values of nAC with respect to nAB and nBC . The

continuity of ψ implies the existence of threshold value n̂AC .

A.2 Proof of Lemma 2

We focus on the cost for users (AC) under the two regimes. Without line (AC) the average

user cost for this group is tAB + tBC +
√

θδ(nAB + nAC) +
√

θδ(nBC + nAC), and with line

(AC) their user cost becomes tAC+
√
θδnAC . Function φ is obtained by taking the difference

and considering Assumption 1. The new line will be used if, and only if, it reduces the

cost for users (AC), i.e. if φ(nAB, nBC , nAC) < 0. Using the same notation in the proof

of Lemma 1, we can introduce h(x, y) = 1 − 1/
√
1 + x − 1/

√
1 + y, in order to express

φ(nAB, nBC , nAC) = h(x, y)/
√
nAC . It is then clear that h(x, y) < 0 when x and y are

sufficiently small. So, φ(nAB, nBC , nAC) ≤ 0 when nAC is relatively large with respect to

nAB and nBC . The existence of threshold value ˆ̂nAC follows from the monotonicity and

continuity of φ in nAC .

A.3 Proof of Lemma 3

Consider x, y, g(x, y) and h(x, y) defined in the proofs of Lemma 1 and Lemma 2. We

have to prove that the intersection of the set {(x, y) > 0 such that g(x, y) > 0} and the set
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{(x, y) > 0 such that h(x, y) < 0} is nonempty. We can show that g(x, y) > 0 if, and only

if, y < yψ(x) where

yψ(x) =
−4

(√
x+ 1− 1

)

x3/2 + 4x2 − 4x
√
x+ 1 + x+

(√
x+ 1 + 1

)√
x+

√
x+ 1 + 1

8x
.

Similarity, h(x, y) < 0 if, and only if, y > yφ(x) where

yφ(x) =
(

2 + 3x+ (1 + x)3/2
)

/x2.

Some algebra shows that for all x > 0, we have yφ(x) < yψ(x), which yields the desired

nonempty intersection.

A.4 Proof of Proposition 2

Notice that tij enters the expression of the total (or user) cost additively. By continuity of

the cost function, if tAC is slightly higher or smaller than the sum of tAB and tBC the new

transit line will also lead to an increase in the total transport cost. We have to prove that

∆̂t < ˆ̂∆t. By using x = nAB/nAC and y = nBC/nAC this is equivalent to showing that for

all x, y > 0 we have h(x, y) < g(x, y). Using the symmetry in these functions it suffices to

show that
√
1 + x − √x < 1/

√
1 + x. Let X =

√
1 + x and notice that for x > 0 we have

X > 1. This inequality becomes X −
√
X2 − 1 < 1/X. Taking the square root term alone

on one side and computing the square on both sides the inequality simplifies to 1/X2 < 1,

which is true for all X > 1.

A.5 Proof of Proposition 3

Users (AB) and users (BC) always vote against the project since it leads to a decrease in

the frequency and hence in their wait time. Users (AC) vote for the project only when it

decreases their generalized travel cost (sum of wait time and travel time). This states the

first part of the proposition. Using the same notation as in the proof of Proposition 1, from

Eqs. (3) and (7) we have

(C∗
2
− C∗

1
)

√

1

δθ nAC
= g(x, y)−

√

nAC
δθ

∆t.
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Inequality nAC > nAB + nBC is equivalent to x + y < 1. By solving the nonlinear program:

maxx,y≥0 g(x, y) under the constraint x+ y ≤ 1, we check that for x, y ≥ 0 and x+ y ≤ 1, we

have g(x, y) ≤ 1 +
√
2−

√
6 < 0. Thus, for ∆t ≥ 0 and nAB + nBC ≤ nAC we have ∆C ≤ 0,

i.e. the new transit line (AC) necessarily decreases the total user cost.
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